(mobo import Concept___Event_For_Confident-migrated) |
m (Text replacement - "[ \s]User:Curator 83" to " Ch") |
||
Line 74: | Line 74: | ||
* Threat Detection using Big Data Analytics | * Threat Detection using Big Data Analytics | ||
* Privacy Preserving Big Data Collection/Analytics | * Privacy Preserving Big Data Collection/Analytics | ||
− | * HCI | + | * HCI Challenges for Big Data Security & Privacy |
* Trust management in IoT and other Big Data Systems | * Trust management in IoT and other Big Data Systems | ||
* Hardware/OS Acceleration for Big Data | * Hardware/OS Acceleration for Big Data |
Revision as of 12:38, 7 July 2022
The document "BigData 2019" was published on "2023-11-22T17:08:46" on the website "ConfIDent" under the URL https://confident-conference.org/index.php/Event:IEEE BigData 2019.
The document "BigData 2019" describes an event in the sense of a conference.
The document "BigData 2019" contains information about the event "BigData 2019" with start date "2019/12/09" and end date "2019/12/12".
The event "BigData 2019" is part of the event series identified by [[Event Series:IEEE BigData]]
Example topics of interest includes but is not limited to the following:
- Big Data Science and Foundations
- Novel Theoretical Models for Big Data
- New Computational Models for Big Data
- Data and Information Quality for Big Data
- New Data Standards
- Big Data Infrastructure
- Cloud/Grid/Stream Computing for Big Data
- High Performance/Parallel Computing Platforms for Big Data
- Autonomic Computing and Cyber-infrastructure, System Architectures, Design and Deployment
- Energy-efficient Computing for Big Data
- Programming Models and Environments for Cluster, Cloud, and Grid Computing to Support Big Data
- Software Techniques and Architectures in Cloud/Grid/Stream Computing
- Big Data Open Platforms
- New Programming Models for Big Data beyond Hadoop/MapReduce, STORM
- Software Systems to Support Big Data Computing
- Big Data Management
- Search and Mining of a variety of data including scientific and engineering, social, sensor/IoT/IoE, and multimedia data
- Algorithms and Systems for Big DataSearch
- Distributed, and Peer-to-peer Search
- Big Data Search Architectures, Scalability and Efficiency
- Data Acquisition, Integration, Cleaning, and Best Practices
- Visualization Analytics for Big Data
- Computational Modeling and Data Integration
- Large-scale Recommendation Systems and Social Media Systems
- Cloud/Grid/Stream Data Mining- Big Velocity Data
- Link and Graph Mining
- Semantic-based Data Mining and Data Pre-processing
- Mobility and Big Data
- Multimedia and Multi-structured Data- Big Variety Data
- Big Data Search and Mining
- Social Web Search and Mining
- Web Search
- Algorithms and Systems for Big Data Search
- Distributed, and Peer-to-peer Search
- Big Data Search Architectures, Scalability and Efficiency
- Data Acquisition, Integration, Cleaning, and Best Practices
- Visualization Analytics for Big Data
- Computational Modeling and Data Integration
- Large-scale Recommendation Systems and Social Media Systems
- Cloud/Grid/StreamData Mining- Big Velocity Data
- Link and Graph Mining
- Semantic-based Data Mining and Data Pre-processing
- Mobility and Big Data
- Multimedia and Multi-structured Data- Big Variety Data
- Ethics, Privacy and Trust in Big Data Systems
- Techniques and models for fairness and diversity
- Experimental studies of fairness, diversity, accountability, and transparency
- Techniques and models for transparency and interpretability
- Trade-offs between transparency and privacy
- Intrusion Detection for Gigabit Networks
- Anomaly and APT Detection in Very Large Scale Systems
- High Performance Cryptography
- Visualizing Large Scale Security Data
- Threat Detection using Big Data Analytics
- Privacy Preserving Big Data Collection/Analytics
- HCI Challenges for Big Data Security & Privacy
- Trust management in IoT and other Big Data Systems
- Hardware/OS Acceleration for Big Data
- FPGA/CGRA/GPU accelerators for Big Data applications
- Operating system support and runtimes for hardware accelerators
- Programming models and platforms for accelerators
- Domain-specific and heterogeneous architectures
- Novel system organizations and designs
- Computation in memory/storage/network
- Persistent, non-volatile and emerging memory for Big Data
- Operating system support for high-performance network architectures
- Big Data Applications
- Complex Big Data Applications in Science, Engineering, Medicine, Healthcare, Finance, Business, Law, Education, Transportation, Retailing, Telecommunication
- Big Data Analytics in Small Business Enterprises (SMEs),
- Big Data Analytics in Government, Public Sector and Society in General
- Real-life Case Studies of Value Creation through Big Data Analytics
- Big Data as a Service
- Big Data Industry Standards
- Experiences with Big Data Project Deployments